Bayesian nonparametric sparse seemingly unrelated regression model (SUR)∗
نویسندگان
چکیده
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization and overfitting issues, we propose a hierarchical Dirichlet process prior for SUR models, which allows shrinkage of SUR coefficients toward multiple locations and identification of group of coefficients. We propose a two-stage hierarchical prior distribution, where the first stage of the hierarchy consists in a Lasso conditionally independent prior distribution of the NormalGamma family for the SUR coefficients. The second stage is given by a random mixture distribution for the Normal-Gamma hyperparameters, which allows for parameter parsimony through two components: the first one is a random Dirac point-mass distribution, which induces sparsity in the SUR coefficients; the second is a Dirichlet process prior, which allows for clustering of the SUR coefficients. Our sparse SUR model with multiple locations, scales and shapes includes the Vector autoregressive models (VAR) and dynamic panel models as special cases. We consider an international business cycle applications to show the effectiveness of our model and inference approach. Our new multiple shrinkage prior model allows us to better understand shock transmission phenomena, to extract coloured networks and to classify the linkages strenght. The empirical results represent a different point of view on international business cycles providing interesting new findings in the relationship between core and pheriphery countries.
منابع مشابه
Bayesian Geoadditive Seemingly Unrelated Regression
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملBayesian Geoadditive Seemingly Unrelated Regression 1
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملSparse Seemingly Unrelated Regression Modelling: Applications in Econometrics and Finance
We present a sparse seemingly unrelated regression (SSUR) model to generate substantively relevant structures in the high-dimensional distributions of seemingly unrelated model (SUR) parameters. This SSUR framework includes prior specifications, posterior computations using Markov chain Monte Carlo methods, evaluations of model uncertainty, and model structure searches. Extensions of the SSUR m...
متن کاملSemiparametric Bayesian Inference in Multiple Equation Models
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...
متن کاملBayesian Semiparametric Inference in Multiple Equation Models
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...
متن کامل